Tag Archives: Kopfrechnen

Trachtenberg – Multiplikation mit 12

Die Multiplikation mit 12 ist ein weiteres Beispiel dafür, wie einfach Multiplikationen durch einen kleinen Kopfrechentrick durchgeführt werden können. Der Trick lehnt sich von der Ausführung her an die Multiplikation mit 11. Sollte es also Verständnisschwierigkeiten geben, sollte vielleicht dieser Artikel noch einmal kurz überflogen werden, damit es klarer wird. So dann wollen wir starten. Als erstes eine einfache Multiplikation. 113 x 12 Die Regel im Trachtenbergsystem lautet folgendermaßen:
  1. Nimm die Zahl, beginnend von der letzten, mal zwei
  2. Und addiere den rechten Nachbarn zu diesem Zahlenwert
  3. Schreibe die Zahl an, bei einer Zahl größer 10 nimm den hinteren Teil und übertrage die 1 zur nächsten Rechnung
Die Regeln sehen beziehungsweise lesen sich wieder schwerer als das ganze Prinzip ist. Daher werden wir gleich wieder eine Rechnung gemeinsam durchführen und dann können wir uns selbst von der Einfachheit des Trachtenbergsystems überzeugen Also nochmal: 113 x 12
  1. Schritt:                 Die erste Zahl die wir nehmen müssen, ist die 3. Diese sollen wir mal 2 nehmen. Also 6. Jetzt das ganze zum rechten Nachbarn addieren. Bei der letzten Zahl gibt es keinen. Das heißt 6 wird angeschrieben _ _ _ 6
  2. Schritt:  Jetzt die zweite Zahl. Die 1 in der Mitte, mal 2 genommen ergibt 2 plus den rechten Nachbarn, die 3, ergibt eine 5. Somit wird die 5 angeschrieben _ _ 5 6
  3. Schritt: Jetzt kommt die dritte Zahl, wieder eine 1. Diese mal zwei genommen ergibt wiederum eine 2 plus den rechten Nachbarn, eine 1, ergibt also 3. Jetzt wird eine 3 angeschrieben _ 3 5 6
  4. Schritt: Wichtig! Hier müssen wir wieder die Ausnahme (wie bei der Multiplikation mit 11) beachten. Man muss im Trachtenbergsystem an jede Zahl eine 0 an den Anfang anfügen, dass heißt im Klartext wir rechnen mit der Zahl 0113. Somit ergibt sich der 4. Schritt als folgende Rechnung: 0 mal 2 ergibt immer noch Null plus den rechten Nachbarn, die 1, ergibt somit 1. 1 3 5 6
Für alle Ungläubigen ein Griff zum Taschenrechner. Ja es stimmt 1356 ist das richtige Ergebnis. Somit sollten in Zukunft beim Kopfrechnen Multiplikationen mit der Zahl 12 kein Problem mehr für uns darstellen.  Um diesen Kopfrechentrick zu festigen wollen wir noch ein paar Übungen durchführen. Jetzt 432 x 12  –>  0432 x 12 (0 nicht vergessen)
  1. Schritt: Wir nehmen wieder die 2 und multiplizieren diese mit 2. Also 4. Es gibt keinen rechten Nachbarn. Also 4 an _ _ _ 4
  2. Schritt: Wir nehmen die 3. Diese verdoppelt gibt die 6. Plus den rechten Nachbarn ergibt 8 _ _ 8 4
  3. Schritt: Wir nehmen nun die 4. Diese mal 2 ergibt eine 8. Plus den rechten Nachbarn ergibt eine 11. So jetzt haben wir den Fall mit Übertrag. Dies bedeutet wir schreiben die 1 an und der Übertrag ist 1. Den bitte beim 4. Schritt nicht vergessen! _ 1 8 4
  4. Schritt: Jetzt haben wir die 0. Mal 2 ergibt wieder 0 plus den rechten Nachbarn, 4, ergibt eine 4 und jetzt noch plus den Übertrag 1, ergibt somit eine 5 5 1 8 4
Schon warm geworden? Na dann werden wir noch eine Aufgabe rechnen. Man bemerkt schnell den Nachteil dadurch, dass man die Zahl mal 2 nehmen muss. Es entstehen bei Zahlen die größer 4 sind zwangsläufig immer Überschläge. Daher will ich nur zu bedenken geben ob man beim Kopfrechnen bei einer geeigneten Zahl nicht auch zu der Methode wechselt, die ich bereits in einem anderen Post beschrieben hab. Dieser Kopfrechentrick beschäftigte sich damit, dass man die Multiplikation in zwei einfache Multiplikationen aufteilt und einfach eine Addition am Ende durchführt. Aber das sehen wir uns gleich nochmal bei der nächsten Zahl an. Sehen wir uns einmal die Zahl 867 x 12 an. Rechnen wir sie einmal nach Trachtenberg 867 x 12  –>  0867 x 12
  1. Schritt: 7 mal 2 ergibt 14. 4 an 1 gemerkt _ _ _ 4
  2. Schritt: 6 mal 2 ergibt 12. 12 + 7= 19. Übertrag nicht vergessen. 19 + 1 = 20. 0 an 2 gemerkt _ _ 0 4
  3. Schritt: 8 mal 2 ergibt 16. 16 + 6 = 22. Übertrag nicht vergessen. 22 + 2 = 24. 4 an 2 gemerkt _ 4 0 4
  4. Schritt: 0 mal 2 ergibt 0. 0 + 8 = 8. Übertrag nicht vergessen. 8 + 2 = 10. Also hier 10 an, da keine weitere Rechnung folgt 10 4 0 4
Hier waren schon viele Überträge dabei. Jetzt vergleichen wir die Methode mal mit der Zerlegung der Multiplikation: 867 x 12 = 867 x ( 10 + 2) = 8670 + 2 x 867 = 8670 + 2 x (870 – 3) = 8670 + 1740 – 6 = 9 670 + 740 – 6 = 10370 +40 – 6 = 10410 – 6 = 10404 Welche Methode einem besser gefällt muss jeder für sich entscheiden, beziehungsweise wird man das schnell beim Üben bemerken was einem besser liegt. Möglich wäre natürlich auch noch dieser Weg der auch nicht zu verachten ist und meiner Meinung nach noch schneller funktioniert. 867 x 12 = (900 – 33) x 12 = 9000 + 1800 – 33 x 12 = 10800 – (330 + 66) = 10800 – 396 = 10800 – 400 + 4 = 10404 Wert sind sie es auf alle Fälle beide zum probieren. Genau das ist aber das Konzept des Kopfrechnens. Probieren, Probieren, Probieren. Nicht von einem Weg aus Bequemlichkeit überzeugen lassen, Probieren sie mehrere Wege beim Kopfrechne aus. Schauen sie ob sie Ergebnisse so hinbiegen können, dass sie simple Rechentricks verwenden können. Und sie werden merken, mit der Zeit wird man schneller und schneller. Schon alleine durch das viele austesten bekommt man die Übung. Und das allerwichtigste daran ist, dass sie ein Gefühl für die Zahlen bekommen. Sie werden sehen welcher Weg schneller ust. Kaum haben Sie die Rechnung gesehen, wird Ihnen ihre Intuition sagen, was sie machen sollen. Das ist unser Ziel!!

Das Trachtenbergsystem und was dahinter steckt

Heute wollen wir uns einmal etwas mit dem Trachtenberg System für das Kopfrechnen befassen. In der englischen Literatur wird es auch Trachtenberg Speed System genannt. Trachtenberg war ein russischer Ingenieur und Gründer des Mathematischen Instituts in der Schweiz. Er arbeitete an einem System, welches das Kopfrechnen extrem vereinfachen sollte. Dabei legte er sich die folgenden Regeln auf: Nur das kleine Einmaleins muss man kennen. Und selbst das nur bis zur Zahl 5. Ab Multiplikationen mit der Zahl 6 beginnen schon seine Regeln zu greifen. Das System umfasst die Multiplikation mit ein- und mehrstelligen Zahlen. Das Dividieren, das Addieren bzw. Subtrahieren und das Wurzel ziehen. Natürlich ist das System mathematisch erklärbar und kein Hokuspokus. Die Erläuterungen werde ich für alle Interessierten später einmal extra Einträge widmen. In meinen Augen ist der große Unterschied zu den anderen Methoden, die ich bereits erläutert habe, bzw. sich hier auf diesem Blog befinden, dass es beim Trachtenberg System nicht um das „Showrechnen“ selbst geht. Das Problem dabei ist nämlich, dass die Zahlen immer von hinten her berechnet werden. Dies stellt, wie ich schon oft erwähnt habe ein Problem dar. Man beginnt ja immer die Zahl von vorne zu lesen. Damit erscheint es dem Beobachter wieder langsamer, wenn man erst die ganze Zahl durchrechnen muss, um dann ein Ergebnis präsentieren zu können. Jedoch und warum ich vor allem an diesem System einen Gefallen gefunden habe: Es ist einfach unkompliziert. Bei den anderen Methoden zum Schnellrechnen muss man viel mit Erfahrungswerten arbeiten, muss viel auswendig wissen und gut abschätzen können. Dies ist hier alles nicht notwendig. Man kann einfach loslegen und innerhalb kürzester Zeit ist man Fähig Multiplikationen im Kopf zu berechnen von denen man sonst nur träumen konnte. Ein weiterer großer Vorteil des Trachtenberg Systems ist, dass es sehr einfach gehalten wurde und auch speziell dafür konzipiert wurde, Grundschülern beigebracht zu werden. Erfahrungsberichte zeigen (vor allem in Amerika) auf wie einfach Grundschüler multiplizieren können, nachdem das Trachtenberg-System in der Schule eingeführt wurde. Man erspart den Kindern das auswendig lernen von Multiplikationstabellen und erspart ihnen vielleicht somit auch die ersten schlechten Erinnerungen an die Mathematik. (Was wirklich schrecklich ist, wenn die Kinder schon in der Grundschule die Lust an diesem wunderbaren Fach verlieren und oft für ihr Leben „gezeichnet“ sind) Viele werden sich nun fragen: Was ist das Trachtenberg System denn jetzt überhaupt? Was kann man sich darunter vorstellen? Ein simples Beispiel dafür haben Sie bereits kennengelernt, wenn sie den Eintrag „Multiplikation mit der Zahl 11“ durchgearbeitet haben. Diese Methode ist sehr ähnlich. Nur das sie im Trachtenbergsystem etwas anders angewandt wird. Hier soll es ein Beispiel geben: 1253 x 11 = ? Nun heißt die Regel nicht, dass wir die letzte und erste Ziffer nehmen und jeweils wieder an den Rand schreiben, sondern folgender maßen: Man nimmt sich jeweils eine Ziffer und addiert den rechten Nachbarn zu dieser Ziffer. Man beginnt mit der rechten Seite (also von hinten) Eigentlich ganz einfach. Was genau gemeint ist, zeig ich Ihnen jetzt 1253 x 11 =
  1. Schritt:
Man nimmt die 3. Diese hat jedoch keinen Nachbarn auf der rechten Seite. Dies bedeutet dann im eigentlichem Sinne „3 + 0“ à Also wird die 3 angeschrieben _ _ _ _ 3
  1. Schritt:
Jetzt nimmt man die 5. Der rechte Nachbar ist die 3. 5 + 3 = 8 Somit schreibt man als zweite Ziffer die 8 an. _ _ _ 8 3
  1. Schritt: Jetzt kommt die 2. Der rechte Nachbar ist die 5. Also 2 + 5 = 7 Somit schreiben wir als dritte Ziffer die 7 an. _ _ 7 8 3
  2. Schritt: Jetzt kommt die 1. Der rechte Nachbar ist die 2. Also 1 + 2 = 3 _ 3 7 8 3
  3. Schritt. Ausnahme!! Man muss sich vor der Zahl eine 0 denken! Also 01253 Das bedeutet wir nehmen die 0 und addieren den rechten Nachbar dazu. Die 1 Somit 0 + 1 = 1 1 3 7 8 3
Der letzte Schritt ist in dem Sinn keine Ausnahme. Man muss sich nur merken, dass man im Trachtenbergsystem vor die Zahl immer eine 0 schreiben muss. Was auch die logische Konsequenz ist, weil die 1 eben auch noch mit berücksichtig werden muss. Haben Sie die Parallelen zu der bereits bekannten Methode gesehen? Hier sind wir so vorgegangen, dass wir einfach die die erste und die Letzte Zahl wieder abgeschrieben haben. Dies ist hier auch immer zwangsläufig der Fall. Denn die letzte Zahl hat keinen Nachbar, dass heißt diese bleibt immer so wie sie ist. Und die erste Zahl hat immer die 0 voran. Somit bleibt diese auch immer erhalten. Das soll erst einmal genug vom Trachtenberg System sein. Es gibt noch viele spannende Regeln, die ich alle nacheinander erläutern will. Zum Schluss gebe ich noch einen kurzen Überblick über die Regeln zur Multiplikation
  • Multiplizieren mit 4, 5, 6, 7, 8, 9, 10, 11, 12
  • Multiplizieren zweistelligen Ziffern
  • Die Zwei Finger Methode

Multiplikation – aller Anfang ist schwer

In der Multiplikation können die Zahlen schnell sehr groß werden. Daher werden wir anfangs noch bei kleineren Produkten bleiben, die wir dann nach und nach steigern können. Da das Feld etwas ausführlicher sein wird als Addition und Subtraktion werde ich die Multiplikation in einige Teilbereich aufspalten, die wir dann nacheinander abhandeln können.
  1. Das kleine Einmaleins
  2. Multiplizieren einer zweistelligen Zahl mit einer einstelligen Zahl
  3. Multiplizieren einer dreistelligen Zahl mit einer einstelligen Zahl
  4. Quadrieren zweistelliger Zahlen
  5. Multiplizieren von zwei zweistelligen Zahlen
  6. Quadrieren von dreistelligen Zahlen
  7. Mnemotechniken (Zahlen besser merken)
  8. Multiplikation von dreistelligen Zahlen mit zweistelligen Zahlen
  9. Quadrieren von vierstelligen Zahlen
  10. Kubieren von Zahlen
  11. Multiplikation von zwei dreistelligen Zahlen
Das sollte erst einmal reichen und wird uns eine ganze Zeit beschäftigen. Beim ersten Punkt werden sich einige an die Schulzeit zurückversetzt fühlen (falls sie nicht noch mitten drin stecken). Und ich muss ihnen auch leider gleich einen „kleinen“ Dämpfer geben. Das kleine Einmaleins muss sitzen. Und zwar wirklich sitzen. Ohne die Grundmultiplikationen werden wir bei den anderen Rechnungen nie auskommen. Beziehungsweise werden die anderen Rechnungen so aufgebaut sein, dass wir alles auf einfache Multiplikationen des Einmaleins zurückführen werden (so viel schon einmal vorweg). Daher müssen sie das kleine Einmaleins beherrschen. Bis zum nächsten Eintrag haben sie ja noch etwas Zeit um zu trainieren. (Einziger Ausweg wäre das System von Trachtenberg, welches ich auch zu einem späteren Zeitpunkt einmal erläutern werde. Mit diesem System kann man auch Multiplikationen der Grundrechenarten durch kleinere Tricks vereinfachen) Hier ein paar kleine Hilfen, mit denen es vielleicht leichter geht.
  1. Im Alltag: Sich nicht vor kleinen Rechnungen scheuen und lieber mal den Taschenrechner liegen lassen
  2. Beim Autofahren: Nehmen sie sich die Nummern vom Vordermann vor und versuchen sie diese kreuz und quer zu multiplizieren. Geben Sie sich vielleicht sogar eine feste Zahl vor z.B. 78. Jetzt versuchen Sie die Zahlen so zu multiplizieren, addieren, subtrahieren, dass sie auf diese Zahl kommen. Für die Addition lohnt es sich vielleicht, gleich 2 oder 3 Ziffern auf einmal zu nehmen um mit höheren Zahlen rechnen zu können.
  3. Gehen Sie einfach wachsam durch die Welt und nehmen einmal war wie oft Sie mit Zahlen konfrontiert werden. Nutzen Sie „tote“ Zeiten und spielen Si emit den Zahlen. Das mag sich vielleicht seltsam anhören. Aber hinsichtlich des letzten Punktes schaffen Sie es somit leicht, die 10 Minuten gut in den Tag hinein zu bauen, ohne das es einen Zeitverlust darstellt. Probieren Sie es einfach aus. Mir hat es geholfen.
  4. Und wichtigster Punkt. Jeden Tag zehn Minuten üben, üben, üben! Zehn Minuten sind nicht viel. Diese kann man respektive Punkt 1 – 3 so in den Tag einbauen, dass sie einem garnicht abgehen. Und noch ein wichtiger Grundsatz wenn sie voller Enthusiasmus ans Werk gehen. Trainieren Sie lieber dreimal am Tag 10 Minuten, als einmal am Tag 30 Minuten.  Das ist effizienter, schont die Nerven und bringt Sie schneller an den gewünschten Erfolg.
Alles gut verdaut? Na dann kanns ja beim nächsten mal wieder mit der Rechenarbeit beginnen. Bis dahin üben sie fleißig. Es wird sich lohnen, beruflich wie auch die Bewunderung anderer einbringen.

Multiplizieren – Endziffern Summe 10

Ein nächster faszinierender Trick ist die Multiplikation mit Zahlen die mit der gleichen Ziffer beginnen und deren Endziffern die Summe 10 ergeben  z.B. 23 x 27  (ich weiß, dass sind viele Eingrenzungen und man hat wohl nicht immer die Möglichkeit diesen Trick einzusetzen, aber bei einigen Multiplikationsaufgaben ist er sehr hilfreich) Der Trick ist wieder ähnlich simpel , wie beim Quadrieren mit der Endziffer 5. Als erstes nehmen wir die 2, erhöhen sie um 1 und multiplizieren sie wieder mit der 2. Also (2+1) x 3 = 6. Die 6 ist wieder unsere erste Ziffer. Jetzt brauchen wir noch das Ende. Das kriegen wir diesmal indem wir die beiden Endziffern miteinander multiplizieren. Also 3 x 7 = 21. Somit sollte unsere gesuchte Zahl 621 sein. Ok noch ein paar weitere Aufgaben zum festigen: 33  x 37 =             (3 x 4)  (3 x 7)   = 12       21 = 1221 46 x 44 =              (4 x 5)   (6 x 4)   = 20       24 = 2024 72 x 78 =              (7 x 8 )  (2 x 8)   = 56       16 = 5616 Das war es auch schon wieder. Nun im nächsten Post, werden wir endlich mit der normalen Multiplikation beginnen. Also seien sie schon mal gespannt auf die Einführung.

Quadrieren mit der Endziffer 5

Quadrieren mit Endziffer 5 Hier kommt ein weiterer Trick, der schnell erklärt ist. Es geht, wie die Überschrift schon verrät ums Quadrieren. Und zwar gibt es Quadrate, die sich blitzschnell berechnen lassen. Diese Enden alle mit der Ziffer 5. 15 x 15? 35 x 35? 85 x 85? Sind alles Multiplikationen, die wir in Zukunft ohne weiteres grübeln lösen können. Wie? Nun fangen wir an. Der Trick ist kurz und knapp erklärt. Am Beispiel 25 x 25: Nehmen sie die vordere Ziffer, hier 2 und erhöhen sie diese Zahl um 1, hier also 3. Nun multiplizieren sie die beiden Zahlen miteinander . Also, 2 x (2+1) = 2 x 3 = 6. Der letzte Schritt:  fügen sie ans Ende der soeben erhalten Zahl die 25 an. Also  6   25   –>   625 Das war alles? Jawohl! Mehr gibt es darüber nicht zu wissen. Nochmal ein Beispiel: 65 x 65. Wir nehmen die 6. Um 1 erhöht ergibt 7. Nun die beiden Zahlen miteinander multiplizieren. 6 x 7 = 42. Am Ende hängen wir noch die 25 dran –>   4225 Das war auch schon alles. Es ist doch immer wieder faszinierend auf welche einfachen Zusammenhänge man oft nicht kommt. Wie man sich zuvor abgeplagt hat um so etwas zu rechnen. Doch die Zeiten sind jetzt hoffentlich vorbei. Ich denke das haben sie mittlerweile auch eingesehen. Viel Spaß bis zum nächsten Mal. Dann werden wir noch den letzten Trick behandeln, bevor wir uns endgültig der Multiplikation widmen können. 

Login Form

Login Form