Tag Archives: Multiplizieren mit 11

Trachtenberg – Multiplizieren mit 11

Das Multiplizieren mit 11 habe ich ja bereits erläutert. Hier noch einmal die die Vorgehensweise, damit die Regel einen eigenen Post bekommt. 1253 x 11 =
  1. Schritt:
Man nimmt die 3. Diese hat jedoch keinen Nachbarn auf der rechten Seite. Dies bedeutet dann im eigentlichem Sinne „3 + 0“ à Also wird die 3 angeschrieben _ _ _ _ 3
  1. Schritt:
Jetzt nimmt man die 5. Der rechte Nachbar ist die 3. 5 + 3 = 8 Somit schreibt man als zweite Ziffer die 8 an. _ _ _ 5 3
  1. Schritt: Jetzt kommt die 2. Der rechte Nachbar ist die 5. Also 2 + 5 = 7 Somit schreiben wir als dritte Ziffer die 7 an. _ _ 7 5 3
  2. Schritt: Jetzt kommt die 1. Der rechte Nachbar ist die 2. Also 1 + 2 = 3 _ 3 7 5 3
  3. Schritt. Ausnahme!! Man muss sich vor der Zahl eine 0 denken! Also 01253 Das bedeutet wir nehmen die 0 und addieren den rechten Nachbar dazu. Die 1 Somit 0 + 1 = 1 1 3 7 5 3
Der letzte Schritt ist in dem Sinn keine Ausnahme. Man muss sich nur merken, dass man im Trachtenbergsystem vor die Zahl immer eine 0 schreiben muss. Was auch die logische Konsequenz ist, weil die 1 eben auch noch mit berücksichtig werden muss. Gleich noch eine Aufgabe zum Üben: 45762 x 11 = 045762 x 11
  1. Schritt:
Man nimmt die 2. Diese hat keinen rechten Nachbarn also wird sie wieder einfach hingeschrieben – – – – – 2
  1. Schritt:
Jetzt nimmt man die 6. Diese hat die 2 als rechten Nachbarn. Das heißt: 6 + 2 = 8 Die 8 wird angeschrieben – – – – 8 2
  1. Schritt:
Jetzt wird die 7 genommen. Rechter Nachbar ist die 6. Das heißt: 6 + 7 = 13 3 wird angeschrieben. Die 1 ist ein übertrag und muss zur nächsten Stelle mitgenommen werden. – – – 3 8 2
  1. Schritt: Jetzt wird die 5 genommen. Der rechte Nachbar ist die 7. 7 + 5 = 12. Vorsicht nicht den Übertrag von vorher vergessen!! 12 + 1 = 13. Also wird die 3 angeschrieben und wieder ein Übertrag von 1 – – 3 3 8 2
  2. Schritt: Jetzt wird die 4 genommen. Rechter Nachbar ist die 5. Somit können wir rechnen: 5 + 4 + 1 = 10 Also wird die 0 hingeschrieben, die 1 wird mitgenommen – 0 3 3 8 2
  3. Schritt: Jetzt kommt noch die 0 (die immer angefügt werden muss). Der rechte Nachbar ist die 4. Also 4 + 0 + 1 = 5 (Übertrag nicht vergessen)
5 0 3 3 8 2 Die letzte Aufgabe zum Üben in der Kurzform 3562 x 11 = 03562 x 11 = (0+3)(3+5)(5+6)(6+2)2 = 39182 Das nächste Mal werden wir uns beim Trachtenbergsystem mit der Multiplikation mit 12 beschäftigen.

Multiplizieren mit 11 (für große Zahlen)

Multiplizieren mit 11 Was jetzt kommt ist eigentlich nur noch eine Erweiterung der vorher besprochenen Methode. Man kann sich natürlich noch Fragen, was passiert wenn die Zahl nicht zwei sondern drei oder mehrere Stellen hat. Nun das Prinzip ist wieder identisch. Was hier natürlich komplizierter wird, ist der Übertrag, der jetzt an mehreren Stellen auftreten kann. Am besten ich erkläre es wieder an einem Beispiel. Das sagt mehr als komplizierte Beschreibungen.

Die äußeren Zahlen werden wieder an den Rand geschrieben. Nur dass jetzt zwei Zahlen in der Mitte entstehen. Einmal durch die Addition von 2 + 3 = 5 und einmal durch die Addition von 3 + 1 = 4 Nun das ganze für eine vierstellige Zahl. Wie viele Zahlen werden eingefügt? Drei genau. Bei einer vierstelligen Zahl können wir jetzt drei Additionen durchführen. Nochmal am Beispiel gezeigt

Eigentlich wieder ganz einfach, oder? Was jetzt an den großen Zahlen etwas unschöner wird, ist der Übertrag. Das kann schon mal verwirrend sein und erschwert es noch dazu sich diese großen Zahlenkolonnen zu merken. (Dafür werde ich nochmal ein extra Thema einführen, dass sich speziell damit auseinandersetzen wird, wie man sich eine größere Menge an zahlen einfach merkt. Aber wie gesagt dies wird später an geeigneter Stelle noch kommen) Die Methodik ist jedoch wieder gleich. Entsteht ein Übertrag, wird dieser an die nächste größere Zahl weitergegeben. So ich denke das war schon schwieriger. Aber nicht entmutigen lassen, wenn es nicht von Anfang an klappen sollte. Wir arbeiten ja noch daran, dass solche Prozesse und Rechenschritte verinnerlicht werden und sie damit bald keine Probleme mehr haben. Aber sehen wir uns die Rechnung noch einmal an. Wir haben jetzt eine vierstellige Zahl mit einer zweistelligen multipliziert. Meiner Meinung nach eine enorme Leistung. Wem es trotzdem zu viel des guten war: Überspringen sie das Thema einfach mit gutem Gewissen und kommen sie später noch einmal hierher zurück. Es wird ihnen um einiges leichter fallen, glauben sie mir. Aber die Lernkurve zeigt immer noch steil nach oben. In den nächsten Lektionen werden noch zwei Tricks kommen und dann packen wir die Multiplikation an. Viel Spaß bis dahin mit den bisherigen Übungen. Damit ihnen bis dahin nicht langweilig wird noch ein paar Übungen: 451 x 11 = 4        (4+5)     (5+1)     1             =             4             9             6             1             = 4961 879 x 11 = 8        (8+7)     (7+9)     9             =             (8+1)     (5+1)     6             9             = 9669 51347 x 11 = 5    6   4   7   (4+7)   7               =             5   6   4   8   1   7                                  = 564817 59382 x 11 = 5   (5+9)   (9+3)   (3+8)   (8+2)   2 = 6   5   3   2   0   2                                   = 653202 (Wohl eine der schlimmsten Zahlen, die Ihnen passieren kann)

Multiplizieren mit der Zahl 11

Dies ist ein sehr einfacher aber auch sehr interessanter Trick. Auch wenn er schon ziemlich bekannt ist, einige werden ihn vielleicht noch nicht kennen. Ich bringe in an dieser Stelle gerne, da man daran wirklich gut erkennen kann mit welch einfachen Mitteln man seine Rechengeschwindigkeit um ein Vielfaches erhöhen kann. Schon ihr Interesse gewonnen? Ich hoffe doch. Also wollen wir anfangen. Ich falle gleich mit der Tür ins Haus. Rechnen wir einmal 23 x 11. Wie würden sie das rechnen? Nun die naheliegende Methode wäre: Na so wie in der Schule. Also:

Führt uns zum richtigen Ergebnis 253. Aber die schnelle Methode die ich versprochen habe ist das noch nicht. Zu viele Einzelschritte und zu viel Zwischenergebnisse. Auch wenn es nur drei Schritte sind ( 23 mal 1, 23 mal 1, beides addieren) es geht noch schneller.

Haben sie es herausgefunden? Wir nehmen einfach die beiden Zahlen und schreiben die linke Zahl (hier 2)  an den linken Rand. Nehmen die rechte Zahl (hier 3) und schreiben sie rechts hin. Die mittlere Zahl ergibt sich aus der Addition der beiden Zahlen (hier 2 + 3 = 5) Das war doch wesentlich einfacher oder? Gleich noch ein Beispiel: 49 x 11

Natürlich ist dem aufmerksamen Leser sofort aufgefallen, dass die Zahlen wieder keinen Übertrag haben bei der Addition. Was passiert dann? Eigentlich genauso einfach, sollte sich bei der Addition ein Übertrag bilden, wird er einfach zur ersten Zahl addiert (also zum Hunderter). Hier wieder ein Beispiel: 57 x 11

Noch einmal zum nachvollziehen. Hier verwenden wir den gleichen Trick wie zuvor. Nur das Problem ist, dass wir bei 5 + 7 einen Übertrag drin haben. Wir bekommen also 12 = 5+ 7. Jetzt addieren wir einfach den Übertrag (also die 1) zur linken Ziffer (der 5). Die übrig gebliebene 2 wird wie zuvor in die Mitte geschrieben. Und als Letztes kommt wieder die 7. Das Ergebnis 627. Hätten sie noch vor 5 Minuten geglaubt, dass sie zwei zweistellige Zahlen innerhalb weniger Sekunden im Kopf multiplizieren können? Ich hab es auch nicht bevor ich den Trick zum ersten mal gelesen habe. Am Ende noch ein paar Übungsaufgaben 67 x 11 =  6                (6+7)       7 =  6                   13           7 = (6 +1)            3            7             = 737 89 x 11 = 8           (8 + 9)         9 = 8               17             9 = 9                 7             9             = 979 So das wäre es fürs erste. Der nächste Trick ist mindestens genauso leicht und erlaubt es uns ebenfalls eine bestimmte Art von Multiplikationen und sekundenschnelle auszurechnen.

Login Form

Login Form